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Abstract

The Babylonian bridal auction, described by Herodotus, is regarded as one of the

earliest uses of an auction in history. Yet, to our knowledge, the literature lacks a

formal equilibrium analysis of this auction. We provide such an analysis for the two-

player case with complete and incompete information, and in so doing identify what

we call the “Herodotus Paradox.”
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1 Introduction

Cassady (1967) and Milgrom and Weber (1982) note that Herodotus’ account of 500 B.C.

Babylonian bridal auctions is one of the earliest recorded uses of an auction in history.

According to the translation by Rawlinson (1885)1, Herodotus wrote:

“Once a year in each village the maidens of age to marry were collected ... Then a

herald called up the damsels one by one, and offered them for sale. He began with

the most beautiful... when the herald had gone through the whole number of the

beautiful damsels, he should then call up the ugliest...and offer her to the men,

asking who would agree to take her with the smallest marriage-portion... The

marriage-portions were furnished by the money paid for the beautiful damsels...”

We examine a simultaneous-move (sealed bid) version of Herodotus’ Babylonian bridal auc-

tion with two suitors and two maidens. Suitor  ∈ {1 2} values the more beautiful of the
two maidens at   0 and the less attractive maiden at    . The higher bidder wins

the more beautiful maiden, and pays the auctioneer the amount bid by the lower bidder.

The auctioneer then transfers this entire amount to the lower bidder as a “sweetener” along

with the less fair of the two maidens. Notice that, as in Herodotus’ original account, the

“sweetener” is a transfer from the winner to the loser, such that the auctioneer’s revenues

are zero in the mechanism.

The payoff to suitor  when he bids  ∈ [0∞) and suitor  bids  ∈ [0∞) is:


¡
 ; 


  




¢
=

⎧⎪⎪⎨⎪⎪⎩
 −  if   

1
2

¡


−  +  + 

¢
if  = 

 +  if   

(1)

We assume that, in the case of a tie, the auctioneer allocates the maidens to the bidders based

on the flip of a fair coin. Notice that in the case of complete information and symmetric

values ( =    = ), this is a constant-sum game.

In Section 2 we examine this auction with complete information. We show that the

standard technique used to construct symmetric mixed-strategy equilibria (which involves

identifying an atomless mixed-strategy in which each player’s expected payoff is constant on

1 An online version of this translation by Rawlinson is available in Ch. 196 at the following website:

http://www.shsu.edu/~his_ncp/Herobab.html.
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its support and verifying that a player cannot improve his payoff by submitting a bid outside

of the support) yields an apparent paradox: There exists a continuum of symmetric mixed-

strategy equilibria in which each player earns an arbitrarily high payoff, despite the fact that

the game is constant-sum and bids are pure transfers between the two players. We show

that this paradox stems from the fact that the standard techniques for constructing mixed-

strategy equilibria in games of complete information are not sufficient to guarantee that the

resulting mixed-strategy is a symmetric Nash equilibrium. In particular, the standard steps

identify a symmetric mixed-strategy,  ∗, such that, for any bid contemplated by one player,

his expected payoff is constant on its support and cannot be improved by deviating to a bid

outside of the support, so that  is a best response to 
∗. Notice that if an outside arbiter

assigns each player a pure strategy that is an independent draw from such an  ∗, and each

player’s particular assignment is private information, then neither suitor has an incentive to

unilaterally deviate from his assigned bid, as the expected payoff from submitting any such

assigned bid cannot be improved by submitting any alternative bid. The paradox stems

from the fact that this “assignment equilibrium” is not a Nash equilibrium because expected

utility with respect to the joint distribution induced by  ∗ does not exist. In other words,

even though  ∗ is an “assignment equilibrium,”  ∗ is not a best response to  ∗ because

players cannot determine their (ex ante) expected utility from employing  ∗ as a strategy.

We also show that, while nonexistence of expected utility in the Babylonian bridal auction

stems from the unboundedness of payoffs, there are many economic games (including the

war of attrition, the sad loser auction, and a variant of the Babylonian bridal auction) with

unbounded payoffs that do not lead to existence problems. The primary take-away from

our analysis is that it is important to add an additional step to the standard analysis for

constructing mixed-strategy Nash equilibria in games with unbounded payoffs: One must

verify that players’ utilities are integrable with respect to the joint distribution of putative

equilibrium mixed strategies. To the best of our knowledge, this point has not been identified

in the literature; in fact, we stumbled upon it purely because of the Herodotus paradox.

Section 3 shows that similar issues arise in games of incomplete information, thereby

demonstrating that the issues are not purely an artifact of mixed-strategies. In auctions

with incomplete information, the standard method used to derive symmetric pure strategies

in fact yields interim equilibria, and these equilibria may not comprise an ex ante equilibrium

because of the failure of ex ante expected utility to exist. We provide an example in the
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context of the Babylonian bridal auction that leads to the Herodotus paradox with incomplete

information: Conditional on the maidens being unveiled (so that their values are private

information to the suitors), there exists a continuum of (interim) equilibria in which players

earn an arbitrarily high payoff–even though all moments of the assumed value distribution

are finite. Yet, none of these paradoxical equilibria are ex ante equilibria. As before, the

failure of these equilibria to constitute ex ante equilibria arises because the ex ante expected

utility arising from the (paradoxical) interim equilibria cannot be computed in the first place.

2 The Babylonian Bridal Auction with Complete In-

formation

Suppose first that players are symmetric and have complete information, so that  ≡ 

and  ≡  in equation (1). One may readily verify that 
∗ = ( − ) 2 is a symmetric

pure-strategy equilibrium, and that this is the unique symmetric pure-strategy equilibrium2.

In this equilibrium, each suitor earns a payoff of  = 1
2
( + ).

2.1 A Paradox

The standard approach for finding a symmetric mixed-strategy equilibrium typically involves

three steps: (1) identify a “candidate” continuous distribution function  such that each

player’s expected payoff is constant on its support, given that the rival’s bid is determined by

 , (2) verify that “candidate”  is indeed a well-defined continuous cumulative distribution

function, and (3) show that neither player can unilaterally increase his payoff by submitting

a bit outside of the support of  , given that the rival’s bid is determined by  .

Following this approach, suppose the rival suitor bids according to a continuous  on

[] (so that the probability of a “tie” is zero). Then the expected payoff to a player that

submits a bid of  ∈ [] against his rival’s  is

() =

Z 



( − )  () +

Z 



( + )  ()

=

Z 



( − )  () +

Z 



( + )  () 

2 Uniqueness follows from Proposition 1 in Baye, Kovenock and de Vries (forthcoming).
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Using step (1) and letting  denote the density of  , constancy of expected payoffs

requires that for all  ∈ []:

0 =



() = ( − )  ()− ( + )  () +

Z 



 () 

= ( −  − 2)  () + 1−  ()

which implies  −  − 2  0 for  ∈ [). The solution to this differential equation is

 () = 1−
µ



 −  − 2
¶1

2

where   0 is a constant determined in step (2). In particular, moving to step (2), for this

to be a well-defined continuous distribution function requires

 () = 1−
µ



 −  − 2
¶ 1

2

= 0,

which implies  =  −  − 2  0 (and hence,   ( − ) 2). Thus,

 () = 1−
µ
 −  − 2
 −  − 2

¶1
2

Next, setting  () = 1

 () = 1−
µ
 −  − 2
 −  − 2

¶1
2

= 1

implies  =∞

Hence, the candidate symmetric equilibrium entails each suitor  submitting a bid, ,

based on a cumulative distribution function

 ∗ () = 1−
µ
 −  − 2
 −  − 2

¶ 1
2

on [∞) (2)

where  ∈ ¡−
2

∞¢ is arbitrary. It is easily verified that  ∗ is a well-defined atomless
probability distribution with density

∗ () =
 ∗


=

µ
 −  − 2
 −  − 2

¶ 1
2
µ
2+  − 

( −  − 2)2
¶
 0

This completes step (2).

The expected payoff to a player that submits a bid of  ∈ [∞) against his rival’s  ∗ is

() ≡
Z 



( − )  ∗() +
Z ∞



( + )  ∗() (3)

=  +
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which is constant on [∞). To complete step (3), note that for 0  ,  (0) = +
0 

 (), which means a suitor cannot improve his payoff by submitting a bid below given

that the rival’s bid is based on  ∗

Thus, applying the usual reasoning–that is, steps (1) through (3)–one would conclude

that  ∗ is a symmetric mixed-strategy Nash equilibrium in which each player earns a finite

expected payoff of∗ = + ∞. Notice that, since  ( − ) 2 is arbitrary, there

is a continuum of such equilibria and, for arbitrarily large, each player’s payoff is arbitrarily

large (but finite) in any such equilibrium. This is what we call the Herodotus Paradox with

complete information: The bid transferred to the loser exactly equals the amount paid by

the winner (the auctioneer earns zero profit with probability one), so it would seem that

sum of the two suitors’ payoffs is constant ( +  ) Yet, application of steps (1) through

(3) leads to the conclusion that players can earn an arbitrarily high expected payoff in a

symmetric mixed-strategy Nash equilibrium. That is, the mixed strategies derived using

standard arguments appear to lead to a “utility pump.”

2.2 A Closer Look at the Paradox

The Herodotus paradox suggests that the standard arguments used to derive mixed-strategy

equilibria may be incomplete. Notice that the standard arguments imply that if one suitor’s

bid is a random draw from  ∗ then the other suitor is indifferent between submitting any

bid  ∈ [∞) and strictly prefers such a bid to bidding 0  . Based on this, it is

tempting to conclude that–so long as one suitor randomizes based on  ∗–the other suitor

can do no better than to also choose a bid at random from  ∗, since it places all mass on

[∞). Using equations (1) and (3), this reasoning would seem to imply that the equilibrium
expected payoff to a player that randomizes against  ∗ by (independently) using  ∗ himself

is (letting ∗ denote the product measure induced by 
∗ () and  ∗ ())
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=

Z ∞



 () 
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It turns out that this reasoning fails in the Babylonian bridal auction with complete

information:  ∗ is not a best response to  ∗–not because there is a profitable deviation, but

because  (
∗  ∗) does not exist. Consequently, the conditions of Fubini’s Theorem (Chung,

1974, p. 59-60) are not satisfied; indeed, in the case at hand the integrals in equations (4)

and (5) are not equal.3 In short,  (
∗  ∗) 6= R∞


 () 

∗ (), and it is erroneous to

use the fact that  () =  + is constant for  ∈ [∞) and  ()   + for

   to conclude that  ∗ is a best response to  ∗. The Herodotus paradox–that the sum

of the putative equilibrium payoffs can exceed + by an arbitrarily large amount–stems

from the fact that the putative strategies do not comprise a Nash equilibrium in the first

place.

To establish these assertions, first recall that the expectation of a random variable 

does not exist if  [+] =  [−] = ∞, where + ≡ max (0) and − ≡ max (− 0)

(see Chung, 1974, p. 40). We will demonstrate that  (
∗  ∗) does not exist by taking

 ≡ 
¡
 ; 


  




¢
and showing that  [+] =  [−] =∞

Note that  [+] and  [−] both exist since they are, by definition, expectations of

non-negative real numbers. Hence, Fubini’s Theorem (see Chung, 1974, p. 60) implies that

the integral of+ and− with respect to the product measure induced by  ∗ can be written

as a double integral that is invariant to the order of integration. Thus, for the case at hand,


£
+
¤ ≡  [max ( 0)] =

Z ∞



Z ∞



max (( − )  0) 
∗ () 

∗ ()

+

Z ∞



Z ∞



max (( + )  0) 
∗ () 

∗ ()

3 Indeed, one can show that
R∞


R∞
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R∞
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¢
 ∗ ()  ∗ () =  +
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Note that the first term is finite, since the integrand is bounded above by . The second

term is Z ∞



Z ∞



max (( + )  0) 
∗ () 

∗ ()

=

Z ∞



Z ∞



( + ) 1()
∗ () 

∗ () 

= 

Z ∞



Z ∞



1()
∗ () 

∗ ()  +
Z ∞



Z ∞



1()
∗ () 

∗ () 

= 

Z ∞



Z ∞



1()
∗ () 

∗ ()  +
Z ∞




∗ ()

Z ∞



1()
∗ () 

= 

Z ∞



Z ∞



1()
∗ () 

∗ ()  +
Z ∞




∗ () (1−  ∗ ()) 

Once again the first term is finite. The second term isZ ∞




∗ () (1−  ∗ ()) 

=

Z ∞





µ
 −  − 2
 −  − 2

¶ 1
2
µ
2+  − 

( −  − 2)2
¶µ

 −  − 2
 −  − 2

¶ 1
2



=

Z ∞





µ
2+  − 

( −  − 2)2
¶


= (2+  − )

Z ∞





( −  − 2)2


= ∞

Hence, we conclude that  [+] =∞.
Similarly,


£
−¤ ≡  [max (− 0)] =

Z ∞



Z ∞



max (− ( − )  0) 
∗ () 

∗ ()

+

Z ∞



Z ∞



max (− ( + )  0) 
∗ () 

∗ ()

=

Z ∞



∗ ()max (− ( − )  0)

Z ∞




∗ () 

=

Z ∞



∗ ()max (− ( − )  0) (1−  ∗ ()) 

=

Z 



0 +

Z ∞



( − ) (1−  ∗ ()) 
∗ () 

= −
Z ∞



(1−  ∗ ()) 
∗ ()  +

Z ∞



 (1−  ∗ ()) 
∗ () 
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The first term is once again bounded. The second term isZ ∞



 (1−  ∗ ()) 
∗ () 

=

Z ∞





µ
 −  − 2
 −  − 2

¶ 1
2
µ
 −  − 2
 −  − 2

¶ 1
2

Ã
2+  − 

( −  − 2)2
!


=

Z ∞





Ã
2+  − 

( −  − 2)2
!


= ∞

Since  [+] =  [−] =∞,  [] ≡  (
∗  ∗) does not exist, and thus:

Theorem 1  ∗ is not a symmetric Nash equilibrium to the Babylonian bridal auction.

To summarize, existence of a symmetric mixed strategy Nash equilibrium requires that

 ∗ be an (ex ante) best response to  ∗. The  ∗ constructed based on standard arguments

(the three steps described above) does not satisfy this condition–not because there is a

profitable deviation, but because the expectation cannot be computed in the first place. The

larger point is that in auctions and contests with “spillovers” and payoff functions that are

unbounded, it is important to add to steps (1) through (3) a fourth step: one must (4)

verify that each player’s utility is integrable with respect to the joint distribution of putative

equilibrium mixed strategies– ∗ in this case.4 In the interest of full disclosure, we stumbled

upon the relevance of the fourth step purely because of the Paradox; had  ∗ not led to a

paradox, we would have presumed it was a legitimate equilibrium to the Babylonian bridal

auction.

It is important to stress that, in games where payoff functions are bounded, if steps

(1) through (3) are satisfied then step (4) is automatically satisfied. However, there are a

number of important games in economics where payoff functions are unbounded and steps

(1) through (3) lead to a symmetric mixed-strategy with unbounded support. Probably the

best known example is the war of attrition, where the analogue of equation (1) is

 ( ; ) =

⎧⎪⎪⎨⎪⎪⎩
 −  if   

1
2
( −  − ) if  = 

− if   

4 A random variable is integrable if its expectation exists and is finite; see Chung (1974, p. 40). If one is

willing to admit equilibria in which players earn infinite equilibrium payoffs, one can replace this fourth step

with a step that merely verifies existence of expected utility with respect to the product measure induced

by  ∗ .
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and the analogue to equation (2) is

 ∗ () = 1− exp (−) on [0∞)

Notice, however, that with  ≡  ( ; ),  [
+]  ∞ and  [−]  ∞. Hence in the

War of Attrition, utility is integrable with respect to the joint distribution induced by  ∗.

In other words, step (4) is satisfied in the war of attrition, so  ∗ is indeed a symmetric

mixed-strategy Nash equilibrium.

As a second example, consider a variant of the Babylonian bridal auction in which the

low bidder receives, in addition to the transfer from the winning bidder, a matching dowry

from an outside party. In this case,

 ( ) =

⎧⎪⎪⎨⎪⎪⎩
 −  if   

1
2
( −  +  + 2) if  = 

 + 2 if   

(6)

One may directly verify that ∗ = ( − ) 3 is a symmetric pure-strategy equilibrium. In

addition, there also exists a continuum of “candidate” symmetric mixed-strategy equilibria

that satisfy steps (1) through (3), which is as follows: For every  ∈ ¡−
3

∞¢,
 ∗ () = 1−

µ
 −  − 3
 −  − 3

¶2
3

on [∞)

Straightforward calculations reveal that, since  ≡  ( ),  [
+]  ∞ and  [−] 

∞. Thus, step (4) is also satisfied. It follows that  ∗ is a symmetric mixed-strategy equi-

librium in which each player earns an expected payoff of ∗ = 2+  ∈
¡
2
3
 +

1
3
∞

¢
.

Since   ( − ) 3 is arbitrary, there is a continuum of such equilibria in which each

player’s expected payoff is arbitrarily large. However, the Babylonian bridal auction with a

matching dowry does not exhibit a Herodotus Paradox, since these arbitrarily high payoffs

come out of the hide of the outside party that pays the matching dowry. Interestingly, for

any given  ∈ ¡−
3

∞¢  R∞


 ∗ = ∞, so that the expected bid of each player is
unbounded. This illustrates that unbounded expected bids do not imply the failure of a

candidate equilibrium that satisfies steps (1) through (3) to, in fact, be a Nash equilibrium.5

5 The complete information version of the Riley-Samuelson Sad Loser auction is another example of a

game that has a symmetric mixed-strategy Nash equilibrium where players’ expected bids are unbounded.
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2.3 Discussion

This analysis illustrates that there are games where mixed-strategies satisfy the standard

three steps (constancy of payoffs on the support, well-defined probability distribution, and

no profitable deviation outside of the support) but yet do not comprise a Nash equilibrium.

Nonetheless, in these instances a mixed strategy constructed using steps (1) through (3) may

be viewed as an assignment equilibrium: If an outside arbiter assigns each player a pure

strategy that is an independent draw from a mixed-strategy satisfying steps (1) through (3)

and each player’s particular assignment is private information, then given the assigned pure

strategy each player’s expected payoff exists and is given by  ().

For the case of the Babylonian bridal auction with complete information, if an outside

arbiter assigns each suitor a bid , it is common knowledge that each player’s bid assign-

ment is an independent draw from  ∗, and each suitors’s particular assignment is private

information, then given the assigned bid each suitor’s expected payoff exists and is given by

 () =  +  ∈
¡
1
2
 +

1
2
∞

¢
. Moreover, neither suitor has an incentive to deviate

from , as the expected payoff from submitting any such assigned bid is constant on [∞)
and cannot be improved by submitting any alternative bid. Thus, steps (1) through (3)

essentially yield an equilibrium to this assignment game. The equilibrium to this assignment

game is not a Nash equilibrium to the original game, however, since players cannot compute

their (ex ante) utility from participating in this assignment game. Indeed, the Herodotus

paradox is related to a similar observation made by Bhattacharyya and Lipman (1995) in

the context of a speculative bubble game. They show that two symmetric traders can enjoy

positive expected gains to exchange, despite the fact that the gain to one trader in any

realization exactly equals the loss to the other trader. Similar to the Herodotus paradox,

this result stems from the fact that the underlying game does not have an ex ante equilib-

rium (owing to a failure of the integrability of expected utility), but does have an interim

equilibrium.

In contrast, the symmetric equilibrium mixed strategies in the war of attrition and the

Babylonian bridal auction with a matching dowry satisfy steps (1) through (4), so these

mixed strategies are both an equilibrium to the original game (the mixed strategies are

mutual best responses) and an equilibrium to the assignment game (any  assigned is a best

response to the rival’s mixed strategy).
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3 The Babylonian Bridal Auction with Incomplete In-

formation

This section shows that the Paradox identified above is neither an artifact of mixed-strategies

nor the assumption that the players have complete information. To see this, suppose that it is

common knowledge that both suitors value the lesser maiden at  ≡ 0, but that the suitors’
valuations of the fairer maiden are privately observed random variables,  ≡ , which are

independently and identically distributed with an exponential distribution function,  () =

1 − exp (−) on [0∞) with associated density  () = exp (−)  Note that, since for any
 = 1 2 3 ,


£

¤
=

Z ∞

0

 exp (−)  = ( − 1)!

all moments of the assumed value distribution are bounded, including  [] = 1 Thus, each

suitor’s (ex ante) expected value of the most beautiful of the two maidens is unity.6

Under these assumptions, equation (1) simplifies to

 ( ; ) =

⎧⎪⎪⎨⎪⎪⎩
 −  if   

1
2
( −  + ) if  = 

 if   

3.1 A Paradox

The standard approach to solving for a symmetric (pure-strategy) equilibrium in this in-

complete information environment is to: (1) assume that the rival follows a monotonically

increasing bid function,  (), that maps the rival’s valuation into a bid; (2) determine the

bid, , that solves the first-order condition for maximizing ’s expected payoff given that

he knows his own valuation is  but not the specific valuation of the rival; (3) impose sym-

metry of the two players’ bid functions and solve for a candidate symmetric equilibrium bid

function; (4) verify that it is monotonically increasing; and (5) verify that a player cannot

profitably deviate from the symmetric bid function.

In the case at hand, step (1) implies that the expected payoff to suitor  who knows his

6 Results similar to those described below obtain for other distributions, including the unit Pareto dis-

tribution where  () = 1− −1 on [1∞) and  [] =∞
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own valuation is  but not that of the rival is

 ( ; ) =

Z −1 ()

0

[ − ()] () +

Z ∞

−1 ()

()

=

Z −1 ()

0

[ − ()] exp (−)  +
Z ∞

−1 ()

 exp (−) 

Applying step (2), we differentiate with respect to  and set the marginal expected payoff

equal to zero:




 ( ; ) =

1

0
¡
−1 ()

¢ £ − (
−1
 ())

¤
exp

¡−−1 ()
¢

− 1

0
¡
−1 ()

¢ exp ¡−−1 ()
¢
+ exp

¡−−1 ()
¢

= 0

Applying step (3) with  () =  () =  () implies

 −  ()

0 ()
exp (−)−  ()

0 ()
exp (−) + exp (−) = 0

or

0 () = 2 ()− 

The solution to this first-order ordinary differential equation is

 () =  exp (2) +


2
+
1

4
(7)

Turning to step (4), note that  () is strictly increasing for all ≥ 0, so there is a continuum
of such candidate equilibria with  ≥ 0
Finally, turning to step (5), note first that the support of the random variable  is [0∞)

Consequently for any  ≥ 0, the rival’s bid  ∈ [ + 1
4
∞) in the putative equilibrium.

This implies that player  cannot gain by deviating to a bid below  + 1
4
since doing so

yields player  a payoff of    + 1
4
with probability one, which is dominated by bidding

 =  + 1
4
and earning a payoff of  + 1

4
(with probability one the rival suitor’s valuation

is strictly positive and hence    + 1
4
with probability one). If both suitors play the

putative equilibrium strategies, then the expected payoff to a suitor whose valuation of the
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maiden is  is

 ( ()   () ; ) =

Z 

0

[ − ()] () +

Z ∞



[ ()] ()

=

Z 

0

∙
 − ( exp (2) + 

2
+
1

4
)

¸
exp (−) 

+( exp (2) +


2
+
1

4
)

Z ∞



exp (−) 

=

Z 

0

∙
 − ( exp (2) + 

2
+
1

4
)

¸
exp (−) 

+( exp (2) +


2
+
1

4
) exp (−)

=

µ
 − 1

4

¶
(1− exp (−))−

Z 

0

³
2
+ ( exp (2)

´
exp (−) 

+( exp (2) +


2
+
1

4
) exp (−)

=

µ
 − 1

4

¶
(1− exp (−))

−
µ
−1
2
(( + 1) exp (−2)− 2 + (2 − 1) exp (−)) exp ()

¶
+( exp (2) +



2
+
1

4
) exp (−)

=  +  − 3
4
+ exp (−)

where  ≥ 0
To complete step (5), we establish that there is no incentive for player  to deviate to

an alternative bid  ∈ [ + 1
4
∞) by verifying that a suitor with valuation  cannot gain

by bidding as though his valuation is  6= . Let  ( ()   () ; ) denote the payoff a

player obtains by bidding as though his valuation is  when it is in fact  Then

 ( ()   () ; ) =

Z 

0

[ − ()] () +

Z ∞



 () ()

=

Z 

0

∙
 −

µ
 exp (2) +



2
+
1

4

¶¸
exp (−) 

+

µ
 exp (2) +



2
+
1

4

¶Z ∞



exp (−) 

=  +  − 3
4
+ exp (−) + ( − ) exp (−)
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The gain from such a deviation, ∆ () ≡  ( ()   () ; )− ( ()   () ; ), is

∆ () =  +  − 3
4
+ exp (−) + ( − ) exp (−)−

µ
 +  − 3

4
+ exp (−)

¶
= exp (−) + ( − ) exp (−)− exp (−)
= exp (−)− exp (−) + ( − ) exp (−)
≤ 0

where the inequality follows by letting  () ≡ exp (−) = −0 () and noting that, since
 () is convex,

 ()−  () ≥ 0 () ( − )

Thus, applying the usual reasoning–steps (1) through (5) in this case–one would conclude

that the strategies identified in equation (7) comprise a symmetric Bayesian-Nash equilib-

rium.

Since steps (1) through (5) hold for any  ≥ 0 there is a continuum of symmetric pure-
strategy equilibria in which a player whose valuation is  ∈ [0∞) earns a (finite) expected
payoff of  =  +  − 3

4
+ exp (−) ∈ [ − 3

4
+ exp (−) ∞) This is the Herodotus

paradox with incomplete information: Even though all moments of the value distribution

are bounded, and conditional on values any payment by one suitor is a pure transfer to the

other, application of steps (1) through (5) leads to the conclusion that players can earn an

arbitrarily high (but finite) expected payoff in a symmetric pure-strategy equilibrium.

3.2 A Closer Look at the Paradox

Note that the equilibrium strategies that obtain from steps (1) through (5), and which are

summarized for the case at hand in equation (7), correspond to an interim equilibrium in

that each suitor knows his own valuation of the maidens, but not the valuation of the rival

suitor. Expressed differently, the paradoxical equilibrium corresponds to a situation where

the two maidens are unveiled, and each suitor knows his own valuation of the most beautiful

maiden but not how much the rival suitor values her. Once the maidens are unveiled (that is,

conditional on each player’s private information), there is a well-defined (interim) equilibrium

in which each player can earn an arbitrarily high (interim) expected payoff.

Given the prospect of achieving such a blissful state once the maidens are unveiled, would

the two players have an incentive to attend the auction in the first place to learn the private
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information required to play the interim equilibrium strategies? That is, do the putative

strategies comprise an ex ante equilibrium? The answer, as it turns out, is that when   0

the suitors’ (ex ante) payoffs suffer from the same integrability problem that arose in the

case of complete information, and hence they are incapable of determining whether or not

to participate in the auction prior to the maidens being unveiled.

To formally establish that ex ante expected utility does not exist when   0, note that


£
+
¤ ≡  [max ( 0)] =

Z ∞

0

Z ∞

0

max [( −  ())  0]  ()  ()

+

Z ∞

0

Z ∞

0

max ( ()  0)  ()  ()

=

Z ∞

0

Z ∞

0

max

∙
 − exp (2)− 

2
− 1
4
 0

¸
 exp (−)  exp (−) 

+

Z ∞

0

Z ∞

0

µ
 exp (2) +



2
+
1

4

¶
 exp (−)  exp (−) 

=

Z ∞

0

Z 

0

max

∙µ
 −

µ
 exp (2) +



2
+
1

4

¶¶
 0

¸
exp (−)  exp (−) 

+

Z ∞

0

Z ∞



µ
 exp (2) +



2
+
1

4

¶
exp (−)  exp (−) 

Note that the first term is non-negative, and second term, for   0, is

 = lim
→∞

Z 

0

Z 



µ
 exp (2) +



2
+
1

4

¶
exp (−)  exp (−) 

= lim
→∞

∙
(− 1) +

µ
1

4
+

1

2

¶
exp (−2) +

µ
 − 3

4

¶
exp (−) + 1

4

¸
=

1

4
+ lim

lim→∞
(− 1)

= ∞
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Similarly,


£
−¤ ≡  [max (− 0)] =

Z ∞

0

Z ∞

0

max [− ( −  ())  0]  ()  ()

+

Z ∞

0

Z ∞

0

max (− ()  0)  ()  ()

=

Z ∞

0

Z ∞

0

max

∙
 exp (2) +



2
+
1

4
−  0

¸
 exp (−)  exp (−)  + 0

≥
Z ∞

0

Z 

0

µ
 exp (2) +



2
+
1

4
− 

¶
exp (−)  exp (−) 

=

Z ∞

0

µ
 +

µ


2
− 3
4

¶
exp (−2)−

µ
 +  − 3

4

¶
exp (−)

¶
exp () exp (−) 

= lim
→∞

µ
(− 1) − 1

4
(− 1) exp (−2) +

µ
 + +

1

4

¶
exp (−)− 1

2

¶
= lim

→∞

µ
(− 1) − 1

2

¶
= ∞

(Note that the integral on the right-hand side of the inequality exists, since it is the sum of

two integrals, one finite and the other with a non-negative integrand; see Chow and Teicher,

1978, p. 85). Since  [−] =  [+] = ∞, we conclude that ex ante expected utility does
not exist when   0

It is important to stress that the nonexistence of ex ante expected utility for   0 does

not stem from the nonexistence of interim expected utility; indeed for any value  ∈ [0∞)
observed when the maidens are unveiled, each player’s expected (interim) payoff is finite and

given by  () = +−34+exp (−). Nor does nonexistence stem from pathological
properties of the value distribution; indeed, all moments of the value distribution are bounded

(and in fact,  [] = 1). And, while each player’s expected bid is infinite when   0, we

show in the next section that this is not sufficient for the failure of interim equilibria to be

ex ante equilibria.7

7

 [ ()] =

Z ∞
0

µ
 exp (2) +



2
+
1

4

¶
exp (−) 

= 

Z ∞
0

exp ()  +
1

4
+
1

2

Z ∞
0

 exp (−) 

=  lim
→∞

 − +
3

4
= ∞
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To summarize:

Theorem 2 The specified Babylonian bridal auction with incomplete information has a

unique symmetric pure-strategy ex ante equilibrium that corresponds to  = 0 in equation

(7). There is a continuum of symmetric pure-strategy interim equilibria that corresponds to

 ≥ 0 in equation (7).

3.3 Discussion

This analysis highlights that the standard methods used to derive symmetric pure-strategy

equilibria in auctions with incomplete information, in fact, yield interim equilibria. For

the Babylonian bridal auction with incomplete information, there is a continuum of interim

equilibria that give rise to the Herodotus paradox: Players can earn an arbitrarily high

(interim) expected payoff even though all moments of the value distribution are finite and

any payment received by one player is a pure transfer from the other. These paradoxical

equilibria arise because the paradoxical interim equilibria are not ex ante equilibria. Again,

this failure of the interim equilibria to be ex ante equilibria arises because the ex ante

payoff arising from the interim equilibria (for   0) cannot be computed in the first place.

Expressed differently, for any of the interim equilibria with   0  a player that does

not already know his own private value of the more beautiful maiden cannot evaluate his

expected payoff from attending the auction to observe the unveiled maidens. This implies

that if one considers a two-stage game where, in the first stage, players decide whether

to enter a Babylonian bridal auction based on knowledge of the value distribution (but not

knowing the exact beauty of the maidens) and, upon entering, learn their private value of the

maidens and submit bids, then the Herodotus paradox does not arise (the only equilibrium

is the  = 0 equilibrium). But, if one is modeling an environment where players already

possess private information, one cannot avoid the Herodotus paradox.

As before, we stress that there are a number of important games of incomplete information

in economics where steps (1) through (5) lead to unbounded bid functions, including the

War of Attrition (cf. Bishop, Cannings, and Maynard Smith, 1978; Riley, 1980) and the

Sad Loser Auction (Riley and Samuelson, 1981). However, it is straightforward to show that

integrability conditions hold for these two games, and thus the interim equilibria are also ex

ante equilibria.
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As an additional example, consider the variant of the Babylonian bridal auction intro-

duced in Section 2.2 in which the low bidder receives, in addition to the transfer from the

winning bidder, a matching dowry from an outside party. As above, it is common knowledge

that both players value the lesser maiden at zero, but their private values of the fairer maiden

are independent draws from a unit exponential distribution. It is straightforward to show

that (interim) symmetric equilibrium bid functions are given by

() =  exp (32) +
2

9
+



3

where  ≥ 0 is arbitrary, so that there is again a continuum of symmetric pure-strategy

equilibria. One may verify that each player’s expected bid is unbounded:  [()] = ∞.
Yet, the resulting (interim) expected utility is finite and given by

 () =  − 2
9
+ exp (−) + 2

Moreover, integrability conditions are satisfied, and ex ante expected utility is

 =
17

18
+ 2

Thus, there exist continua of both interim and ex ante symmetric equilibria in which play-

ers achieve arbitrarily high payoffs. However, these equilibria do not exhibit a Herodotus

Paradox, since the increased payoffs to the players come out of the hide of the outside

party that pays the matching dowry. These examples illustrate that unbounded expected

interim equilibrium bids do not imply the failure of an interim equilibrium to be an (ex ante)

Bayesian-Nash equilibrium.

4 Conclusion

The Babylonian bridal auction is an example of a game in which standard techniques for

identifying symmetric equilibria lead to a continuum of “assignment equilibria” in mixed

strategies under complete information and a continuum of interim equilibria in pure strategies

under incomplete information. Across both of these continua, players’ equilibrium payoffs are

arbitrarily large (but finite). We show, however, that in each case all but one of the resulting

equilibria fail to generate ex ante equilibria because the corresponding candidate equilibria

do not satisfy integrability. In fact, ex ante expected utility does not exist with respect to the
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joint distribution induced by the candidate equilibrium strategies. Consequently, under both

complete and incomplete information, ex ante symmetric equilibrium payoffs are uniquely

pinned down.

Our analysis of the Herodotus paradox illustrates that, in both complete and incomplete

information games with unbounded payoffs (such as the Babylonian bridal auction or the war

of attrition), it is potentially important to add an additional step to the standard methods of

deriving symmetric equilibria. This step is to verify the integrability of utility with respect

to the joint distribution induced by the players’ strategies.
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